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ABSTRACT

The solar dynamo is essentially a cyclic process in which the toroidal component of the magnetic

field is converted into the poloidal one and vice versa. This cyclic loop is disturbed by some nonlinear

and stochastic processes mainly operating in the toroidal to poloidal part. Hence, the memory of

the polar field decreases in every cycle. On the other hand, the dynamo efficiency and, thus, the

supercriticality of the dynamo decreases with the Sun’s age. Previous studies have shown that the

memory of the polar magnetic field decreases with the increase of supercriticality of the dynamo. In

this study, we employ popular techniques of time series analysis, namely, compute Higuchi’s fractal

dimension, Hurst exponent, and Multi-Fractal Detrended Fluctuation Analysis, to the amplitude of

the solar magnetic cycle obtained from dynamo models operating at near-critical and supercritical

regimes. We show that the magnetic field in the near-critical regime is governed by strong memory,

less stochasticity, intermittency, and breakdown of self-similarity. On the contrary, the magnetic field

in the supercritical region has less memory, strong stochasticity, and shows a good amount of self-

similarity. Finally, applying the same time series analysis techniques in the reconstructed sunspot data

of 85 cycles and comparing their results with that from models, we conclude that the solar dynamo is

possibly operating near the critical regime and not too much supercritical regime. Thus Sun may not

be too far from the critical dynamo transition.

Keywords: Interdisciplinary astronomy(804) — The Sun(1693) — Magnetohydrodynamics(1964) —

Time series analysis(1916) — Solar dynamo(2001) — Solar magnetic fields(1503) — Solar

cycle(1487)

1. INTRODUCTION

The solar cycle is not regular; the amplitude of the

cycle has a considerable amount of variation. This is

best seen in the observed sunspot number plot for the

last 400 years and its proxy, such as the concentration of

the cosmogenic isotopes (14C and 10Be) data for the last

several thousands of years (Usoskin 2017; Biswas et al.

2023). Another prominent feature of the cycle irregu-

larity is the Gnevyshev-Ohl/Even-Odd rule which is an

alternating pattern of strong and weak cycles (Gnevy-

shev & Ohl 1948; Hathaway 2015). While in some cycles,
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the amplitude changed drastically from one cycle to the

next (e.g., Cycles 6, 20), there is a reasonably smooth

variation as seen by some envelopes in the amplitude,

e.g., Gleissberg cycle (Gleissberg 1939). This indicates

that although the solar cycle is irregular, there is some

(temporal) memory in the underlying system.

We have good support that an αΩ type dynamo

model, operating in the solar convection zone (SCZ), is

responsible for causing the solar magnetic cycle (Karak

et al. 2014; Cameron & Schüssler 2015; Charbonneau

2020). In this type of dynamo the poloidal field (which

is observed to become strongest near the solar minimum)

gives rise to the toroidal field and thus the sunspots for

the next cycle. Hence, there is an unavoidable memory

of about 5 years in the solar dynamo. This is indeed ob-

served in the observations because there is a strong cor-
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relation between the polar field (or its proxy) at the solar

minimum (or the peak field/proxy) and the amplitude of

the next sunspot cycle (Jiang et al. 2007; Wang & Shee-

ley 2009; Kitchatinov & Olemskoy 2011; Priyal et al.

2014; Kumar et al. 2021b). In fact, this is true in any

αΩ type dynamo model as long as the poloidal field gives

rise to the toroidal field (Charbonneau & Barlet 2011).

The polar precursor method of the solar cycle predic-

tion is indeed based on this idea (Schatten et al. 1978;

Choudhuri et al. 2007; Kumar et al. 2021b; Bhowmik &

Nandy 2018; Kumar et al. 2022; Biswas et al. 2023).

Now, is the memory of the polar field limited to the

next cycle only, or is it propagated to multiple following

cycles? At first glance, one may think that the memory

should be propagated to multiple cycles as the solar dy-

namo is just the oscillation between the two components

of the magnetic field: poloidal and toroidal. However,

if we carefully analyze the dynamo chain, then we find

that the toroidal to poloidal part of the solar dynamo

is the one that involves some randomness arising due

to the distributions of the BMR properties, primarily

due to scatters around Joy’s law and randomness in the

BMR emergences (Jiang et al. 2014; Karak & Miesch

2017, 2018; Nagy et al. 2017; Karak 2020). Hence, in

every cycle during the generation of the poloidal field,

the memory of the polar field is degraded. The toroidal

to poloidal component of the solar dynamo also involves

some nonlinearities, which at least include the flux loss

due to magnetic buoyancy in the formation of BMR

(Biswas et al. 2022), latitude quenching (Jiang 2020;

Karak 2020), and tilt quenching (Jha et al. 2020). The

nonlinearity plays an important role in determining the

memory of the polar field when the dynamo becomes

supercritical. Kumar et al. (2021a) have shown that if

the dynamo operates near the critical dynamo transi-

tion, then the dynamo tends to be linear and the polar

field of a cycle strongly correlates to the toroidal field

of multiple following cycles. On the other hand, this

correlation is limited to one cycle if the dynamo oper-

ates in a highly supercritical region. They have made

this conclusion by performing various types of dynamo

simulations at different parameters, namely diffusivity,

meridional circulation, and nonlinearity and in all mod-

els, they found that the correlation between the polar

field and the toroidal field of the subsequent cycles is

consistently shortened from multiple cycles to one cy-

cle as the supercriticality of the dynamo is increased.

They have further shown that this degradation of mem-

ory is independent of the amount of diffusion and the

advection of the magnetic field, as suggested by Yeates

et al. (2008). The diffusion and advection, of course,

determine the memory within a cycle and a little bit

beyond one cycle (Charbonneau & Dikpati 2000; Jiang

et al. 2007). However, when these are kept constant,

whether the memory of the polar field is propagated to

multiple cycles or not is determined by the amount of

the supercriticality.

While in the previous work (Kumar et al. 2021a), the

memory was measured just by measuring the correlation

between the peaks of the polar fields and the peaks of

the following cycle toroidal fields. In the present work,

we shall apply some well-known techniques of nonlin-

ear time series analyses. In the time series analyses,

two popular quantities, namely the Higuchi’s dimension

(D) and Hurst exponent (H) are generally used to de-

termine the complexity of the system. D is a fractal

dimension that determines the geometrical structure at

multiple scales. On the other hand, H helps to iden-

tify the presence of long-term memory in a time series

(Oliver & Ballester 1998; Sánchez Granero et al. 2008;

Souza Corrêa et al. 2017; Das et al. 2022).

In the present study, we shall compute D and H of

the cycles produced in the different regimes of the dy-

namo to measure the memory of the cycles. Using these

measures, we shall independently demonstrate that the

memory of the solar cycle beyond one cycle is indeed

determined by the supercriticality of the solar dynamo.

We shall also compare the results with those from the

observed sunspot data and comment on the supercrit-

icality of the solar dynamo. Knowing the amount of

supercriticality will tell how far our Sun is from the crit-

ical dynamo transition (below which the dynamo action

ceased). Answering this is essential because, with age,

the Sun’s dynamo efficiency decreases (as the rotation

rate and thus the generation of poloidal field reduces),

and at some point in its life, the Sun will stop produc-

ing its (large-scale) dynamo action. Incidentally, some

studies hint that our Sun is not too far from the criti-

cal dynamo transition (Rengarajan 1984; Metcalfe et al.

2016; Kitchatinov & Nepomnyashchikh 2017; Vashishth

et al. 2023).

2. MODEL DATA

We have used the data from three Babcock–Leighton

type dynamo models, namely Models I, II, and Time

Delay dynamo, operating them in the near critical and

supercritical regimes. Models I and II are essentially

flux transport dynamo models built using the Surya

code (Nandy & Choudhuri 2002; Chatterjee et al. 2004;

Choudhuri 2018) in which a local α prescription, single-

cell meridional flow, turbulent diffusion, and differential

rotation are used. The difference between Models I and

II is that diffusion dominates in Model I (parameters for

the poloidal field diffusion: η2 = 1 × 1012 cm2 s−1 and
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(b) Supercritical

Figure 1. Time series of the peak values of the cycles of the toroidal flux obtained from Model I, operating in the (a) near-
critical and (b) supercritical regimes.

η0 = 2×1012 cm2 s−1 and for the meridional circulation:

v0 = 15 m s−1), and advection dominates in Model II

(same diffusivity parameters but v0 = 26 m s−1). Yeates

et al. (2008) named these two models as diffusion and

advection-dominated models, respectively. To operate

these models in near-critical and supercritical regimes,

we take α̂0 = α0/α
crit
0 = 2 and 4, respectively (where

αcrit
0 is the minimum α0 needed to obtain dynamo tran-

sition). For the time delay dynamo model, we follow

the one presented in Wilmot-Smith et al. (2006). The

time delay model is also of Babcock–Leighton type in

which the delays involved in communicating the toroidal

and poloidal fields to their respective source regions are

captured by suitable time delays in their sources in the

differential equations (Sec. 6.4 of Karak 2023). The

details of all the models are presented in Kumar et al.

(2021a). For operating the time delay dynamo model in

near critical and supercritical, we took α̂0 = 1 and 3,

respectively. We note that the time delay model quickly

goes to supercritical regime (e.g., see Figure 5 of Ku-

mar et al. 2021a) and thus, to operate the model in

near-critical and supercritical regimes, we have taken

the value of α̂0 as 1 and 3 instead of 2 and 4 as taken

in models I and II. From each model, we first compute

the absolute value of the toroidal flux at low latitude

at the base of the convection zone as a function of time

(toroidal field in case of time delay model). Then, the

peak values of the cycles of the toroidal flux/field are

taken as the time series for our analyses. A represen-

tative example of the time series for Model I at critical

regime is shown in Figure 1. The number of data points

in each time series lies between 1800 and 2800.

Let us comment on the solar cycles from our models

I and II. So far, no dynamo model is completely realis-

tic (Charbonneau 2020; Karak 2023); our present ones

are not the exception. Our dynamo models are axisym-

metric and kinematic. The magnetic buoyancy and the

Babcock-Leighton process are parameterised in simpli-

fied manners (Nandy & Choudhuri 2002; Biswas et al.

2022). However, the models still reproduce some basic

features of the solar cycles, namely, the regular polarity

reversals, a strong correlation between the polar field

at the minimum and the amplitude of the next cycle

toroidal field, a strong correlation between the rise rate

and the amplitude of the cycle (Waldmeier effect), long-

term modulation of the amplitude, grand minima and

maxima. To highlight some of these features, in Fig-

ures 9 and 10 of Appendix, we show the variation of

the toroidal field and the butterfly diagram from Model

I at near-critical and supercritical regimes. We can al-

ready see from these figures that the long-term modu-

lation of the cycle in the two regimes is different. The

near-critical model produces a strong long-term modu-

lation and frequent grand minima-like events. Our aim

is to quantify this change of solar cycle memory more

rigorously and to identify at what parameter regime of

dynamo supercriticality, the model reproduces the ob-

servation best.

3. METHODS

Nonlinear time series analysis techniques have been

employed in various diverse fields, starting from the pre-

diction in the stock market to understand the dynam-

ics of various complex systems (Cervantes et al. 2013;

Salcedo-Sanz et al. 2022). In astronomical and solar
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data, these have been used to identify the existence of

low-dimensional chaotic or stochastic signature in the

underlying processes (Mundt et al. 1991; Carbonell et al.

1994; Qin 1998; Hanslmeier & Braǰsa 2010; Karak et al.

2010), and the persistence of the memory in the solar

cycle (Maddanu & Proietti 2022). Recently, Das et al.

(2022) identified some memory in the solar cycle asym-

metry data using different nonlinear dynamics param-

eters like correlation dimension and fractal dimension

techniques. In the present work, we will exploit the non-

linear time series analysis to investigate the memory of

the solar cycles in the dynamo models.

3.1. Higuchi’s dimension

Fractal dimension D, used to characterize nonlinear

time series, is computed using the method given in

Higuchi (1988). Here we only briefly discuss it.

We start with a time series X(i) containing N ob-

servations that have been sampled at regular intervals.

Thus,

X(i) : X(1), X(2), X(3), ..., X(N). (1)

From X(i), we construct a new time series

Xm
s : X(m), X(m+s), X(m+2s), ..., X (m+ ns) , (2)

where, 1 ≤ m ≤ s and n =
[
N−m

s

]
denotes the greatest

integer less than or equal to N−m
s . Associated with each

Xm
s , we calculate the length of the curve Lm(s) as

Lm(s) =

{(
n∑

i=1

|X(m+ is)−X(m+ (i− 1)s)|

)
k

}
1

s
,

(3)

where k = (N − 1)/ns.

The average length of the curve ⟨L(s)⟩ is obtained by

taking the mean of Lm(s) for 1 ≤ m ≤ s. For smin <

s < smax, if we obtain ⟨L(s)⟩ ∝ s−D, the time series is a

fractal of dimension D in that range of s. We compute

⟨L(s)⟩ for 2 ≤ s ≤ 32 and 2 ≤ s ≤ 256 for the data

obtained from critical and supercritical dynamo regimes,

respectively. D is computed from the slope of the double

logarithmic plot of ⟨L(s)⟩ vs s.
The value of D is a fraction with 1 < D < 2. A value

close to 2 denotes a space-filling curve, while a value

close to 1 is a straight line.

3.2. Hurst Exponent

We follow the R/S method introduced by Mandelbrot

& Wallis (1969) to find the Hurst exponent H.

We have a time series, X(i), i = 1, 2, ..., N , whose

Hurst exponent we want to compute. Now, choose a

temporal window s, with st < s < N . Here, st is the

Theiler window. Now, we make (N − s + 1) subsets of

the series X(i) as follows:

xt0(s) : X(t0), X(t0+1), X(t0+2), ..., X(t0+s−1), (4)

where, t0 = 1, 2, ..., N − s + 1. Now, average of the

subset xt0(s) is given by

xt0(s) =
1

s

t0+s−1∑
i=t0

Xi. (5)

Now, the standard deviation of xt0(s) corresponding

to window s is given by

S(t0, s) =

√√√√ 1

s− 1

t0+s−1∑
i=t0

[X(i)− xt0(s)]
2
. (6)

We define the set of cumulative deviations of xt0(s)

from the mean as

yi(t0, s) =

t0+i−1∑
k=t0

[X(k)− xt0(s)] , (7)

where, i = 1, 2, ..., s. Thus, the Range of yi(t0, s) is

R(t0, s) = max
1≤i≤s

yi(t0, s)− min
1≤i≤s

yi(t0, s). (8)

and the rescaled range measure R/S is given by

(R/S)(t0, s) =
R(t0, s)

S(t0, s)
. (9)

For a particular s, we have 1 ≤ t0 ≤ N − s+1 and thus,

the corresponding rescaled range is

(R/S)s =
1

N − s+ 1

∑
t0

(R/S)(t0, s). (10)

This value of the rescaled range is found to vary as

(R/S)s = ksH , (11)

where, k is a constant and H is the Hurst exponent. A

plot is made for log(R/S) vs log(s) for 1 ≤ s ≤ N and

the linear portion of the graph is fitted to obtain the

Hurst exponent. A time series obtained from a white

noise process yields H = 0.5. When H > 0.5 for a time

series, the series is said to be persistent or has a long-

term memory. An increase in the value of the time series

at a particular step is more probable to be followed by

its increase in the next step (rather than a decrease).

When H < 0.5 for a time series, it is said to be anti-

persistent or has a short-term memory. An increase in

the value of the time series at a particular step is more

probable to be followed by its decrease in the next step.
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3.3. Multifractal Analysis

Many nonlinear systems, including solar activity, are

characterized by intermittent phenomena and in such

scenarios, a single Hurst exponent is not sufficient to

capture the essential characteristics of the system. The

Multifractal Detrended Fluctuation Analysis (MF-DFA)

helps reveal the complexity or multifractal structure of

the time series by characterizing the amplitude fluctu-

ations in the data. The MF-DFA method has been de-

veloped from Detrended Fluctuation Analysis (DFA) by

Kantelhardt et al. (2002). This method has been ap-

plied to understand the underlying dynamics that lead

to the flux variability of quasars (Belete et al. 2018) and

the nature of solar flare activity (McAteer et al. 2007;

Sen 2007).

We have a time series, X(i), i = 1, 2, ..., N , and we

want to understand its multifractal structure. Let ⟨X⟩
be the mean of the time series X(i). We compute the

profile as

Y (i) =

i∑
j=1

(X(i)− ⟨X⟩), i = 1, 2, ..., N (12)

Next, we choose a segment size s and divide the new

series Y (i) into Ns = [N/s] segments, where [k] denotes

the integer less than or equal to any real number k.

Starting from the first element of the time series Y (i), we

obtain Ns segments, each of size s and will be left with

N (mod s) elements at the last, which do not belong

to any segment. To account for the remaining part of

the series, we repeat the same process by starting from

the end of the time series, obtaining Ns segments, and

leaving N (mod s) elements at the beginning. Hence,

in total, we obtain 2Ns segments. For each of these

2Ns segments of length s, we compute the first-order
polynomial fit yν(i), 1 ≤ i ≤ s using the least square

method. Next, the variance for each of the segments is

computed as

F 2(ν, s) =
1

s

s∑
i=1

{Y [(ν − 1)s+ i]− yν(i)}2 (13)

for ν = 1, 2, ..., Ns, and as

F 2(ν, s) =
1

s

s∑
i=1

{Y [N − (ν −Ns)s+ i]− yν(i)}2 (14)

for ν = Ns + 1, Ns + 2, ..., 2Ns.

We now compute the average variance of each of the

segments as

Fq(s) =

{
1

2Ns

2Ns∑
ν=1

[F 2(ν, s)]q/2

}1/q

, q ̸= 0 (15)

Fq(s) = exp

{
1

4Ns

2Ns∑
ν=1

ln[F 2(ν, s)]

}
, q = 0 (16)

We are interested in knowing how the average variance

Fq(s) scales with the size of the segments s for different

values of q. Suppose

Fq(s) ∼ sh(q) (17)

and we are interested to find the value of the exponent

h(q) known as the generalized Hurst exponent. For very

small segment size s ≈ 10, there are systematic devi-

ations from the scaling behavior, while for large seg-

ment size s > N/4, the method is statistically unreliable

(Kantelhardt et al. 2002; Ihlen 2012). Thus, we have

chosen the segment size s, such that 15 ≤ s ≤ N/4.

For q = 2, the method corresponds to the method of

Detrended Fluctuation analysis (DFA) and the general-

ized Hurst exponent h(q = 2) corresponds to the Hurst

exponent H.

For any monofractal time series, the generalized Hurst

exponent is independent of q (or varies weakly with q).

While a strong q dependence of h(q), indicates the time

series is multifractal. Moreover, if a homogeneous scal-

ing behavior of Fq(s) (in Equation (17)) is obtained, the

h(q) values for q < 0 are usually larger than the values

when q > 0.

This generalized Hurst exponent h(q) is related to the

scaling exponent τ(q) of the standard partition function

based multifractal formalism, by

τ(q) = qh(q)− 1 (18)

Difference between the slope of τ(q) at q < 0 and q > 0

indicates the strength of multifractality in the data.

Another way to see the multifractal structure of the

data is to use the singularity spectrum given by

f(α) = qα− τ(q) (19)

where, α = τ ′ = dτ
dq . Here, α denotes the singularity

strength and f(α) denotes the dimension of the subset

of the time series that is characterized by α.

Once we have the multifractal spectrum, we can note

down the minimum (maximum) value of the singularity

strength αmin(αmax). The width of the multifractal

spectrum is given by ∆α = αmax − αmin. A broad

spectrum, indicated by large values of ∆α, represents a

higher degree of multifractality in the data (Ihlen 2012).

In the monofractal limit, the spectrum reduces to a sin-

gle point and ∆α goes to zero. However, for real-world

signals which always have a finite length, the multifrac-

tal spectrum always has a small (non-zero) width.

The value of α at which f(α) assumes a maximum

value is denoted by α0. The symmetry in the shape of
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Figure 2. Variation of length ⟨L(s)⟩ with time interval (s)
for toroidal flux data obtained from dynamo models in crit-
ical (left) and supercritical (right) regimes.

the spectrum is given by the quantity A = (αmax −
α0)/(α0−αmin). For a right-skewed (left-skewed) spec-

trum, we have A > 1 (A < 1). When A = 1, the mul-

tifractal spectrum is symmetric. A right-skewed (left-

skewed) multifractal spectrum arises due to left (right)

truncation. A left (right) truncation of the multifrac-

tal spectrum occurs due to the leveling of the qth-order

Hurst exponents for q > 0 (q < 0) (Ihlen 2012). A

left (right) truncation indicates that the multifractal

structure is sensitive to small-scale temporal fluctua-

tions with small (large) amplitudes. Moreover, a left

(right) truncation shows a higher abundance of small

(large) amplitude fluctuations in the time series.

4. RESULTS AND DISCUSSION

4.1. From model data

To explore how the nature of the magnetic cycle

changes with the supercriticality of the solar dynamo,

we shall now look into the results from the nonlinear

time series analysis methods as discussed above.

For Model I, we find D = 1.657 and D = 1.956 for the

time series in the near-critical (Figure 2a) and supercrit-

ical (Figure 2b) regimes, respectively. Again, for Model

II, the time series in the near-critical and supercritical

regimes produce D = 1.501 (Figure 2c) and D = 1.972

(Figure 2d), respectively. Finally, for the Delay Dynamo

Model, we obtain D = 1.616 and D = 1.964 when the

dynamo operates in the critical (Figure 2e) and super-

critical (Figure 2f) regime, respectively.

A periodic time series will be fractal dimension D = 1,

and a highly stochastic time series will be fractal dimen-

sion D = 2 (Bhatt et al. 2017). In the critical regime,

a value of the fractal dimension D close to 1.5 shows

that the system may be chaotic and irregular. However,

in the supercritical regime of the dynamo, the fractal

dimension is close to 2, and thus, the process must be

stochastic.

Moreover, we note that when the dynamo operates

near the critical regime, the value of the fractal dimen-

sion is obtained at a timescales of about 2-32 solar cy-

cles. As we look into larger timescales (beyond 32 solar

cycles), the slope changes, which indicates that some

different fractal dimension is needed to characterize the

time series at these larger timescales. These are typ-

ical of structures that are not self-similar. However,

when the dynamo operates in the supercritical regime,

a single fractal dimension is obtained in a wide range of

timescales, ranging from 2 to 256 solar cycles. This is

indicative of the self-similar nature of the time series ob-

tained in the supercritical regime but not in the critical

regime.

A time series having a fractal dimension between 1.0

to 2.0 will have a memory effect (Souza Corrêa et al.

2017). The range of fractal dimensions for the time se-

ries are varying from 1.50 to 1.97 as we go from near-

critical to supercritical regimes of the dynamo. It gives a

clue about the persistence of memory. Finally, we com-

puted the Hurst exponent to look for the persistence in

the solar cycle memory.

For Model I, we see that the Hurst exponent in the
near-critical regime is 0.963 for the range s = 11 − 50

and in the supercritical regime is 0.747 for the range

s = 11 − 25 (Figure 3a-b) which is > 0.5, i.e., irregular

dynamo time series contains memory. We also see that

in the near-critical regime, the value of the Hurst expo-

nent is greater than in the supercritical regime. More-

over, the number of solar cycles over which the mem-

ory persists is greater when the dynamo operates in the

near-critical regime (11–50) compared to when it oper-

ates in the supercritical regime (11–25).

For Model II, the Hurst exponent in the near-critical

regime is 0.999 for the range s = 11 − 80 and in the

supercritical regime is 0.745 for the range s = 11 − 25

(Figure 3c-d). For the time delay dynamo model, the

Hurst exponent in the critical regime is 0.983 for the
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Figure 3. Variation of R/S with time interval (s) for
toroidal flux data obtained from different models in the near-
critical (left) and supercritical (right) regimes.

range s = 11 − 50 and in the supercritical regime is

0.731 for the range s = 11− 20 (Figure 3e-f).

Thus, all the dynamo models give similar results for

the Hurst exponents. We observe that a dynamo oper-

ating in the near-critical regime has a stronger memory

that persists over a higher number of solar cycles when

compared to the memory in a dynamo operating in the

supercritical regime. This supports our previous conclu-

sion made based on the correlations between the poloidal

and toroidal fields (Kumar et al. 2021a).

The results from the MF-DFA method for Model I are

shown in Figure 4. The generalized Hurst exponent de-

pends on the value of q, which shows that both the time

series have some degree of multifractality. However, for

the near-critical regime, the dependence of h(q) on q

is stronger than in the super-critical case, implying the

multifractal structure is pronounced in the near-critical

regime. For q = 2, the generalized Hurst exponent

h(q) = 0.890 and 0.603 respectively in the near-critical

and supercritical regimes. This shows a large persistence

of the time series in the near-critical regime compared

to the supercritical regime. The result is qualitatively

similar to what has been obtained in the R/S method.

But, the values of the Hurst exponent may be slightly

smaller since we are looking at much larger timescales

−10 −5 0 5 10
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Figure 4. Results from the MF-DFA method obtained in
the near-critical and supercritical regimes of Model I.

in the MF-DFA method. The magnitude of the change

in slope of the graph of τ(q) versus q at q = 0 indi-

cates the multifractal structure in the time series. The

change in slope in the near-critical (0.652) and super-

critical (0.372) regime can also be seen from the jump

in the value of dτ
dq around q = 0 in Figure 4c. Finally,

we obtain the multifractal spectrum (f(α) vs α) with

left (right) truncation when the dynamo operates in the

near-critical (supercritical) regime. The widths of the

spectrum (∆α) in the near-critical (0.770) and supercrit-

ical (0.521) regimes also tell us that the multifractality

is higher in the near-critical regime when compared to

the supercritical regime.

Figure 5 shows the results from the MF-DFA method

when applied to the time series obtained from Model II.

Again, we notice a stronger dependence of the general-

ized Hurst exponent h(q) on q in the near-critical regime.

For q = 2, the generalized Hurst exponent h(q) = 1.24 in

the near-critical regime and h(q) = 0.659 in the super-

critical regime. The value of h(q = 2) > 1 implies that

the non-stationarity in the data could not be successfully

removed by detrending in the near-critical regime (Bryce

& Sprague 2012; Ceballos & Largo 2018). However, the

value of h(q) in the supercritical regime suggests little or

no memory in this regime. The change in slope of τ(q)

vs q around q = 0 is higher in the near-critical regime

(0.987) compared to the supercritical regime (0.317).

The multifractal spectrum (f(α) vs α) is again obtained

with left (right) truncation when the dynamo operates

in the near-critical (supercritical) regime. The width of

the spectrum (∆α) also tells us that the multifractality

is higher in the near-critical regime (1.092) when com-

pared to the supercritical regime (0.432).



8 Ghosh et al.

−10 −5 0 5 10
q

0.3

0.9

1.5

2.1

h(
q)

(a)

−10 −5 0 5 10
q

−22

−11

0

10

τ(
q)

1.9
88

1.001
(b)

0.7
0.383

−10 −5 0 5 10
q

0.2

0.9

1.5

2.2

dτ dq

(c)

0.2 0.7 1.2 1.7 2.2
α

0.00

0.25

0.50

0.75

1.00
f(α

)
(d)

Model II Near-critical
Supercritical

Figure 5. Same as Figure 4 but for Model II.

Figure 6 shows the results of the MF-DFA method

from the Delay Dynamo Model. As obtained earlier, the

generalized Hurst exponent h(q) strongly depends on q

in the near-critical regime, implying a higher degree of

multifractality. We also find that h(q = 2) = 1.07 in

the near-critical regime and h(q = 2) = 0.552 in the

supercritical regime. Again, a value of h(q = 2) greater

than unity suggests that the non-stationarity or trend in

the data from the near-critical regime could not be suc-

cessfully removed. However, a value slightly larger than

unity may be interpreted as high persistence in the data,

similar to that obtained by the R/S method (0.983). In

the supercritical regime, a value close to 0.5 indicates lit-

tle or no memory. The slope of τ(q) vs q changes more

sharply around q = 0 in the near-critical regime (0.699)

compared to the supercritical regime (0.096); also, see

Table 1 for the key parameters of MF-DFA methods

from all models for comparison. The width of the spec-

trum (∆α) confirms that the multifractality is higher in

the near-critical regime (0.874) when compared to the

supercritical regime (0.166). The multifractal spectrum

is obtained with a left truncation in the near-critical

regime, whereas it is mostly symmetric in the supercrit-

ical regime.

The unequal abundance of the small and large am-

plitude variations gives rise to the multifractal struc-

tures in the magnetic field data obtained from the solar

dynamo models. A higher multifractality in the near-

critical regime is due to the relatively larger inequality

in the abundance of small and large amplitude variations

in this regime compared to the supercritical case. More-

over, in the near-critical regime, the multifractal spec-

trum is obtained with left truncation, implying the mul-

tifractal nature of the time series arises due to the higher
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Figure 6. Same as Figure 4 but for the delay dynamo model.

abundance of local fluctuations with small-scale ampli-

tude variations. In the supercritical regime, the width

of multifractal spectrum is narrow and is obtained with

occasional right truncation. This suggests that large am-

plitude fluctuations may be more common but not by a

large margin compared to the small amplitude fluctua-

tions. Thus, the time series in this regime exhibits close

to monofractal behavior.

4.2. From reconstructed sunspot number

Regular homogeneous data of sunspot number are

available only for about the last 30 solar cycles (Usoskin

2023), which is too small to study the long-term be-

havior of the solar activity. However, recently, the an-

nual solar activity series of the last millennium has been

reconstructed from 14C data by Usoskin et al. (2021).

They have also isolated the individual solar cycles and
the corresponding cycle-averaged sunspot number, ⟨SN⟩,
during the period from 971 to 1899. This ⟨SN⟩ is a mea-

sure of the cycle strength. The data was found to con-

tain 85 solar cycles. We construct a time series of these

85 data of ⟨SN⟩ and study the nonlinear characteristics

of this time series. We note that as the sunspot data we

use here is “reconstructed”, which involves a sequence

of model steps, its quality is compromised. However,

as we are using the cycle-averaged SN in our analy-

ses, the effect of noise is somewhat reduced. Further-

more, Usoskin (2023) showed that this reconstructed

data closely resembles the available direct observations

of solar cycles and reproduces the popular Waldmeier ef-

fect (Waldmeier 1935; Karak & Choudhuri 2011). Given

these, we hope that this indirectly observed data carries

some genuine features of the long-term behaviour of so-

lar activity in the past, which can be used to compare
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Dynamo regimes Parameter Window (cycles) Model I Model II Delay Dynamo

Near-critical D 2-32 1.657 1.501 1.616

H 11-50/11-80 0.963 0.999 0.983

∆α 15-365 0.770 1.092 0.816

Skewness (A) 15-365 Right (1.657) Right (0.984) Right (3.602)

Supercritical D 2-256 1.956 1.960 1.964

H 11-20/11-25 0.747 0.732 0.731

∆α 15-365 0.521 0.432 0.152

Skewness (A) 15-365 Left (0.205) Left (0.214) None (0.828)

Table 1. Summary of the results of Higuchi’s dimension, Hurst exponent and the MF-DFA method for different model time
series in near-critical and supercritical regimes.

Parameter Window (cycles) ⟨SN⟩ Ensemble of ⟨SN⟩
D 2-32 1.737 1.749 ± 0.015

H 11-22 0.857 0.843 ± 0.062

∆α 11-21 3.010 2.609 ± 0.633

A 11-21 6.167 5.480 ± 1.989

Table 2. Summary of results obtained for Higuchi’s dimen-
sion, Hurst exponent and the MF-DFA method from the re-
constructed sunspot number.
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Figure 7. Variation of length ⟨L(s)⟩ (left) and R/S (right)
with time interval (s) for the reconstructed SN during the
last millennium (Usoskin et al. 2021).

with the results from dynamo models operating in two

different regimes to get a hint of the operation of the

solar dynamo.

Table 2 tabulates the results of Higuchi’s dimension

and Hurst exponent applied to the ⟨SN⟩ time series. The

Higuchi’s dimension and Hurst R/S for the ⟨SN⟩ time

series are obtained to be 1.737 and 0.857; see Figure 7.

Due to the restricted size of the time series, we were

limited to a smaller window range for the Hurst expo-

nent compared to the results obtained from the Model

data. To account for the error in the ⟨SN⟩ time se-

ries, we compute 100 resampled data sets with the same

size as the ⟨SN⟩ time series. An ensemble of 100 data

points from a Gaussian distribution is produced, con-

sidering the ⟨SN⟩ as the mean and the corresponding

errors as the standard deviation. Finally, we compute

the Higuchi’s dimension and Hurst exponent for the 100
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Figure 8. Results from the MF-DFA method obtained from
the reconstructed SN.

resampled time series and report their means and stan-

dard deviations in Table 2. The Higuchi’s dimension

and the Hurst exponent are found to be 1.749 ± 0.015

and 0.843 ± 0.062, respectively. This suggests that the

data is not completely stochastic but may be irregular

and chaotic. In addition, there is some memory in the

data. However, the results do not precisely locate the

mode of operation of the solar dynamo– it only implies

that the solar dynamo is operating somewhere between

the near-critical and highly supercritical.

Figure 8 shows the multifractal characteristic of the

⟨SN⟩ time series. The time window (segment size s in

Section 3) is chosen to be 11-21 cycles. Though system-

atic deviations may arise at small time windows (11-14

cycles) in the MF-DFA method, we checked there were

no qualitative differences in the results when we chose

the time window to be 15-21 cycles. The generalized

Hurst exponent h(q) strongly depends on q and changes

from 2.6 to 0.6 as q varies from −3 to 3. The vari-

ation is mostly when q < 0. This shows a very high

degree of multifractality in the data. At q = 2, the
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Hurst exponent is 0.734, indicating there is some per-

sistence in the time series. The slope of the τ(q) vs q

graph changes around q = 0 by a large amount (2.19).

This change in the slope is also seen in Figure 8c. The

multifractal spectrum (f(α) vs α) is obtained with a

left truncation and the width of the spectrum (∆α) is

quite large (3.010). The spectrum is also found with a

left truncation (A = 6.167). We repeat the MF-DFA

analysis on the 100 resampled data sets. The spectrum

does not follow the expected inverted parabolic shape

for 13 data sets and is found to produce f(α) > 1. This

may arise when the homogeneous scaling, as assumed

in Equation (17), does not hold in the considered time

window. From the remaining data sets, we find that the

width of the multifractal spectrum is ∆α = 2.609±0.633

and the asymmetry parameter A = 5.480± 1.989.

The large width of the spectrum suggests the need

for a large number of exponents to characterize the

data and, thus, the breakdown of self-similarity. The

left truncation of the multifractal spectrum suggests the

abundance of local fluctuations with small-scale ampli-

tude variations. We can also say that the multifractal

structure of the data is sensitive to small-scale tempo-

ral variations with small-amplitude. The sensitivity of

the multifractal structure to the local fluctuations with

small amplitude variations is also seen for the time se-

ries obtained from the dynamo models when they oper-

ate near the near-critical regime (left truncation of the

f(α) vs α curve in Figures 4d, 5d and 6d). This suggests

that the Sun operates close to the near-critical regime

and not in the highly supercritical one.

5. DISCUSSION AND CONCLUSION

Using nonlinear time series analysis techniques, we

have studied the behaviour of long-term variation of the

magnetic cycles in near-critical and supercritical regimes

of the solar dynamo. For this, we have considered the

peak values of the toroidal flux from three different dy-

namo models. We find that Higuchi’s fractal dimension

(D) is close to 1.5 and 2, respectively, for the near-

critical and supercritical regimes of the dynamo. On

the other hand, the Hurst exponent (H) is near 1 and

0.74 for these two regimes. Values of D and H suggest

that the magnetic cycle in the supercritical regime is

governed by less memory and a more stochastic process.

In other words, when dynamo operates in the supercrit-

ical regime, the persistence nature of the cycle is weak,

and the stochastic nature is dominant. By observing the

long window in H (or in the scaling relation of R/S vs

τ as seen in Figure 3 and Table 1), we conclude that the

memory of the magnetic cycle in the near-critical regime

is very long. This result is congruous with the previous

expectation based on the linear correlation between the

peaks of the polar field and that of the subsequent cycles

(Kumar et al. 2021a). Moreover, we see evidence of self-

similarity in the time series obtained in the supercritical

regime. However, this self-similarity breaks down when

we approach the near-critical regime, as we see a single

value of the fractal dimension is not good enough for a

range of timescales.

The Multi-Fractal Detrended Fluctuation Analysis

(MF-DFA) tells us that the breakdown of self-similarity

(or intermittency) in the near-critical regime arises due

to the large abundance of small-amplitude fluctuations

in the time series, with occasional large-amplitude vari-

ations. However, the time series in the supercritical

regime has little or no disparity in the abundance of

small and large amplitude variations. This gives rise to

a weak multifractal or close to monofractal behavior in

the supercritical regime.

We can understand the above results from the dy-

namo model in the following way. In the near-critical

regime, the effect of nonlinearity is weak, and the dy-

namo number and, thus, the growth rate is small. In

this regime, the dynamo takes a long time to grow the

magnetic cycle if it falls to a low value. This produces

long-term modulation and intermittent behaviour of the

magnetic cycle. On the other hand, in the supercritical

regime, the dynamo number and, thus, the growth rate

and the nonlinearity are high. These cause the mag-

netic field to grow rapidly (due to the high growth rate)

when it has fallen to a low value or decrease rapidly (due

to strong nonlinearity) when the field has enhanced to

a high value. These break the long-term modulation,

making the cycle more stochastic and tends to give a

self-similar pattern.

Further, we compute the nature of the average so-

lar cycle data obtained from annual solar activity series

from the last millennium that has been reconstructed

from 14C data (Usoskin et al. 2021). Given the consid-

erable uncertainty in reconstructed data and the limited

number of cycles, the computed values of D and H sug-

gest that the solar dynamo is possibly not operating in

a highly supercritical regime. The multifractal analyses

show a lack of self-similarity and a high multifractal na-

ture in the time series, arising due to the abundance of

local fluctuations with small amplitude variation. These

suggest that the solar activity is due to an underlying

dynamo process that operates in the near-critical regime

or, at least not, in the highly supercritical one. This con-

clusion is in agreement with the previous independent

investigations (Rengarajan 1984; Metcalfe et al. 2016;

Kitchatinov & Nepomnyashchikh 2017; Vashishth et al.

2023).
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Figure 9. Results from Model I operating at near-critical regime. (a) The temporal variation of the toroidal flux (in code
unit) obtained within a radial extent of 0.67R⊙ to 0.72R⊙ and latitude extent of 15◦ to 45◦. (b) Highlighting the cycles marked
by two vertical black dashed lines in (a). (c) The time-latitude distribution (butterfly diagram) of the toroidal field at 0.72R⊙
during the time interval marked in (b) by vertical black lines.

APPENDIX

A. ADDITIONAL INFORMATION FOR THE MODEL SOLAR CYCLES

In this section, we briefly highlight the salient features of the solar cycles obtained from Models I at near critical

(Figure 9) and super-critical regimes (Figure 10). As seen from these two figures, the model shows irregular cycles

with long-term modulation of the amplitude (top panels), solar-like oscillation of the magnetic field (middle panels),

and the regular reversal of the polarity and the equatorward migration of the toroidal field at the base of the SCZ

(bottom panels). We note that the cycle period is quite long (∼ 22 years) because of the weak meridional flow in this

case. However, model II produces a reasonable cycle duration of about 12 years.
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Figure 10. Same as Figure 9, but from the super-critical regime.
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